Слайд 2

ОСНОВНЫЕ ПОЛОЖЕНИЯ АНАЛИЗА АНАЭРОБНОЙ РАБОЧЕЙ ПРОИЗВОДИТЕЛЬНОСТИ

При оценке рабочей производительности различных систем образования энергии важно понимать различие между емкостью и мощностью системы. Энергетическая емкость - общее количество энергии, которая используется для выполнения работы и образуется в данной энергетической системе. Энергетическая мощность системы - максимальное количество энергии АТФ, которое генерируется при нагрузке за единицу времени данной энергетической системой. .

Слайд 3

Метаболические процессы образования энергии и их Интеграция

□ Креатинфосфокиназный (алактатный) - мгновенный механизм пополнения АТФ (система АТФ-КрФ); регенерация АТФ из системы АТФ-КрФчерез пути креатинкиназы и аденилаткиназы не приводят к образованию лактата и называется алактатным. □Гликолитический, лактатный(система преобразования гликогена в лактат) представляет фосфорилированиеаденозиндифосфата(АДФ) посредством путей гликогенолиза и гликолиза, приводит к производству лактата и называется лактатным. Образование энергии АТФ в этих процессах осуществляется без использования кислорода и поэтому определяется как анаэробная энергопродукция.

Слайд 4

Высокоинтенсивная анаэробная работа может вызвать 1000-кратное повышение интенсивности гликолиза по сравнению с состоянием покоя. Пополнение АТФ во время максимальной продолжительной нагрузки никогда не достигается исключительно только одной системой производства энергии, а скорее является результатом координированной метаболической реакции, в которую все энергетические системы делают различный по выраженности вклад в выход мощности.

Слайд 5

Практические подходы

Более реально измерение максимальной рабочей производительности в течение периодов продолжительностью от нескольких секунд почти до 90 с. При такой продолжительности работы ресинтезАТФ зависит, главным образом, от алактатного и лактатногоанаэробных путей. Простые подсчеты расхода анаэробной энергии можно получить по результатам тестов, если возможно, их дополняют биохимическими или физиологическими измерениями, такими как: лактат мышц и крови, рН, кислородный долг.

Слайд 6

1. Предполагается, что мышечные резервы АТФ обеспечивают работу только для нескольких сокращений и они лучше оцениваются мышечной силой и максимальной мгновенной мощностью в ходе измерения. 2. Предполагается, что максимальные нагрузки продолжительностью несколько минут или дольше являются, главным образом, аэробными и требуют получения информации об аэробном метаболизме. Если необходимо собрать данные об анаэробных компонентах специальной работоспособности спортсменов, выступающих в видах спорта, продолжительность максимального усилия в которых составляет около 2 мин или чуть больше необходимо учитывать взаимодействие (интеграцию) основных компонентов анаэробной рабочей производительности, связанных с длительностью работы.

Слайд 7

Кратковременная анаэробная рабочая производительность

Этот компонент определяется как общий выход работы за время нагрузки максимальной мощности продолжительностью до 10 с. Его можно рассматривать в качестве меры алактатной анаэробной производительности, которая обеспечивается, главным образом, мышечной концентрацией АТФ, системой АТФ - КрФи незначительно анаэробным гликолизом. Наивысшая рабочая производительность в секунду в процессе этого теста эквивалентной максимальной мощности.

Слайд 8

Анаэробная рабочая производительность промежуточной длительности

Этот компонент определяется как общий выход работы за время максимальной нагрузки продолжительностью до 30 с. В таких условиях рабочая производительность является, анаэробной при основном лактатном (около 70 %), существенном алактатном (около 15 %) и аэробном (около 15 %) компонентах. Мощность работы в течение последних 5 с теста можно считать косвенной оценкой лактатной анаэробной мощности. 30-секундный максимальный тест не используют для оценки анаэробной емкости.

Слайд 9

Продолжительная анаэробная рабочая производительность

Определяется как общий выход работы за время максимальной нагрузки продолжительностью до 90 с. Характеризует предел продолжительности работы, которая может быть использована для оценки анаэробной емкости системы энергообеспечения спортсменов. Достоинства этих тестов заключаются в том, что позволяют оценить общую рабочую производительность анаэробных систем при максимальных требованиях к ним и количественно определить снижение рабочей производительности от одной части теста кдругой (например, первые 30 с в противовес последним 30 с), чтобы косвенно оценить вклады и относительные слабые стороны каждой энергетической системы по мере продолжения работы до 90 с.

Слайд 10

Возраст, пол и мышечная масса

Анаэробная работоспособность повышается с возрастом в процессе роста у мальчиков и девочек. Максимальные значения этого вида работоспособности достигаются в возрасте от 20 до 29 лет, а затем начинается ее постепенное понижение. Понижение с возрастом одинаково у мужчин и женщин. Это понижение оказывается почти линейным с возрастом и составляет 6 % на десятилетие. Мужчины лучше женщин выполняют 10-, 30- и 90-секундные максимальные тесты, причем выход работы на килограмм массы тела у женщин составляет примерно 65 % выхода работы на килограмм массы тела у мужчин. Аналогичные различия наблюдаются при сравнении женщин и мужчин, которые лучше других выполняют каждый тест.

Слайд 11

Максимальная анаэробная работоспособность связана с: размерами тела особенно с обезжиренной массой массой мышц. Некоторые различия по возрастному и половому признакам в максимальной анаэробной работоспособности больше связаны с изменениями в мышечной массе, чем с другими факторами.

Слайд 12

Структурные и функциональные факторы, влияющие на анаэробную работоспособность

1. Структура мышц и состав волокон Структура мышцы играет существенную роль для уровня мощности и объема работы, которые она может генерировать. Степень полимеризации актиновых и миозиновых нитей, их расположение, длина саркомеров, длина мышечных волокон, площадь поперечного сечения мышцы и общая мышечная масса являются структурными элементами, которые, делают вклад в работоспособность мышцы в анаэробных условиях, особенно для абсолютной рабочей производительности. Соотношение между составом мышечных волокон и анаэробной работоспособностью не является простым. Спортсмены, специализирующиеся в видах спорта анаэробного характера или видах спорта, требующих высокой анаэробной мощности и емкости, демонстрируют более высокую пропорцию быстросокращающихся волокон (БС). Чем больше БС-волокон или чем большую площадь они занимают, тем выше способность к развитию максимальной мощности и ее кратковременному поддерживанию.

Слайд 13

2. Наличиесубстрата

Выход энергии для максимальной нагрузки очень короткой продолжительности объясняется, главным образом, расщеплением эндогенных, богатых энергией фосфагенов, но оказывается (по крайней мере, у людей), что генерирование максимальной нагрузки даже на очень короткие периоды времени обеспечивается одновременным распадом КФ и гликогена. Истощение запасов КрФограничивать анаэробную работоспособность при нагрузке максимальной мощности и очень кратковременной. Но основная роль КрФв мышце это роль буфера между концентрациями АТФ и АДФ.

Слайд 14

3. Накопление продуктов реакции

Анаэробный гликолиз разворачивается с очень кратковременной задержкой после начала мышечного сокращения, сопровождается накоплением лактатаи, соответственно, увеличением концентрации ионов водорода (Н+) в жидких средах организма. Концентрация лактата мышц существенно повышается после кратковременной нагрузки и может достичь значений около 30ммоль·кг-1влажной массы при изнеможении. Буферные системы мышцы создают частичный буфер для ионов водорода. Например, концентрация бикарбоната мышцы понижается от 100 ммоль·л-1жидких сред мышцы в состоянии покоя до почти 3 ммоль·л-1после максимальной нагрузки.

Слайд 15

Однако мышца не может долго буферировать производимые ионы водорода, и рН мышцы понижается от 7,0 до нагрузки до 6,3 после максимальной нагрузки, вызывающей изнеможение. Понижение рН саркоплазмы нарушает взаимодействие Са2+ с тропонином, которое необходимо для развития сокращения и объясняется конкуренцией ионов водорода (Н+) за кальцийсвязующие участки. Таким образом снижается частота образования перекрестных мостиков актомиозина при понижении рН и также скорость синтеза и расщепления энергии понижена (по принципу обратной связи и из-за нарушения активности катализаторов и ферментов) Способность противостоять ацидозу повышает анаэробную работоспособность.

Слайд 16

Эффективность метаболических путей

Определяется скоростью развертывания энергетического процесса. Скорость креатинкиназной реакции определяется активностью креатинкиназы. Активность которой повышается при снижении АТФ в мышце и накоплении АДФ. Интенсивность гликолиза может стимулироваться либо задерживаться разными сигналами (гормоны, ионы и метаболиты). Регуляция гликолиза в значительной степени определяется каталитическими и регуляторными свойствами двух ферментов: фосфофруктокиназы (ФФК) и фосфорилазы. Как упоминалось выше, высокоинтенсивная нагрузка ведет к чрезмерному повышению Н+ и быстрому понижению рН мышцы. Концентрация аммиака, являющегося производным дезаминирования аденозин 5"-моно-фосфата (АМФ), в скелетной мышце повышается во время максимальной нагрузки. Это повышение еще резче выражено у испытуемых с высоким процентом БС-волокон. Однако аммиак признан в качестве активатора ФФК и может создавать буфер для некоторых изменений внутриклеточного рН. Исследования ин витро показали, что фосфорилаза и ФФК почти полностью тормозятся, когда уровень рН приближается к 6,3. При таких условиях интенсивность ресинтеза АТФ должна быть сильно понижена, тем самым ухудшая способность продолжать выполнение механической работы за счет анаэробного пути энергообеспечения.

Слайд 17

Зависит от качества и количества мышечных волокон: БС-волокна богаты АТФ, КК и гликолитическими ферментами по сравнению с медленно-сокращающимися волокнами. Из этого резюме очевидно, что тренировка максимизирует анаэробную работоспособность, поскольку большинство ограничивающих факторов адаптируется в своем взаимодействии в ответ на тренировку с нагрузками высокой интенсивности.

Слайд 18

Характеристики мышц, необходимые для достижения высокого уровня анаэробной работоспособности, и результаты воздействия высокоинтенсивной тренировки на показатели, которые ее определяют

Слайд 19

Система доставки кислорода

При прочих равных факторах, системы доставки и утилизации кислорода, возможно, делают весьма значительный вклад в максимальную рабочую производительность при нагрузке продолжительностью 90с и дольше. Очевидно, чем длительнее нагрузка, тем выше значимость окислительной системы. В условиях менее продолжительных максимальных нагрузок система доставки кислорода не будет функционировать на максимальном уровне, и окислительные процессы в завершающей части работы сделают лишь небольшой вклад в удовлетворение энергетических потребностей.

Слайд 20

Во время работы с нагрузкой максимальной интенсивности продолжительностью от 60 до 90 с кислородный дефицит, связанный с началом работы, будет преодолен и окисление субстратов в митохондриях в конце работы приведет к увеличению доли аэробных процессов в энергетическом обеспечении работы. В этом случае индивидуумы, способные быстро мобилизовать системы доставки и утилизации кислорода и обладающие соответственно высокой аэробной мощностью, будут иметь преимущество в условиях промежуточной длительности и продолжительной анаэробной работы.

Слайд 21

Наследственность

В настоящее время установлено, что генотип индивидуума в значительной степени определяет наличие предпосылок к высокой аэробной мощности и способности к работе на выносливость, а также высокий или низкий уровень реакции на тренировку. Намного меньше нам известно о наследственности к анаэробной работоспособности. Кратковременная анаэробная рабочая производительность (на основе оценки производительности 10-секундной максимальной работы на велоэргометре), характеризовалась значительным генетическим влиянием примерно на 70 % в том случае, когда данные были выражены на килограмм обезжиренной массы. Недавно было проанализировано несколько исследований на материале спринтерского бега с участием близнецов и членов их семей, проводившихся в Японии и Восточной Европе. Оценки наследственности для результата в спринте колебались в пределах от 0,5 до 0,8. Эти данные предполагают, что генотип индивидуума оказывает существенное воздействие на кратковременную анаэробную рабочую производительность. Пока нет надежных сведений о роли наследственности в продолжительной анаэробной рабочей производительности. С другой стороны, недавно мы получили данные о генетическом влиянии на распределение типов волокон и ферментативную активность скелетной мышцы. Определено незначительное генетическое влияние на максимальную активность КК (около 15 % колебаний), умеренное генетическое влияние на активность ФФК (от 30 до 50 %) и еще более значительное генетическое влияние на активность лактатдегидрогеназы (около 70 %).

Слайд 22

Тренировка

Тренировка повышает показатели мощности и емкости при анаэробной работе кратковременной, промежуточной и продолжительной. Широко изучались колебания в реакции тренировки (тренируемости) на конкретный режим анаэробной тренировки. Реакция на тренировку кратковременной анаэробной рабочей производительности незначительно зависела от генотипа индивидуумов, тогда как реакция на тренировку продолжительной анаэробной рабочей производительности в значительной степени определялась наследственными факторами. Тренируемостьпо общей рабочей производительности 90-секундной работы характеризовалась генетическим влиянием, составляющим примерно 70 % колебаний в реакции на тренировку. Эти данные имеют большое значение для тренеров. По результатам тестов легче найти талантливых людей для кратковременной анаэробной работы, чем для продолжительной анаэробной работы. С другой стороны, ввиду значения генотипа в реакции на тренировку продолжительной анаэробной работоспособности результаты тестов можно объяснять только с учетом предыдущего содержания тренировки (или ее отсутствия).

Слайд 23

Анаэробная мощность и емкость у малоподвижных мужчин и сильнейших конькобежцев

Слайд 24

Спасибо за внимание

Посмотреть все слайды

Аэробная производительность - это способность организма выполнять работу, обеспечивая энергетические расходы за счёт кислорода, поглощаемого непосредственно во время работы.

Потребление кислорода при физической работе возрастает по мере увеличения тяжести и продолжительности работы. Но для каждого человека существует предел, выше которого потребление кислорода увеличиваться не может. Наибольшее количество кислорода, ĸᴏᴛᴏᴩᴏᴇ организм может потребить за 1 минуту при предельно тяжелой для него работе - принято называть максимальным потреблением кислорода (МПК). Эта работа должна длиться не менее 3 минут, т.к. человек может достичь своего максимального потребления кислорода (МПК) только к третьей минуте.

MПK - является показателœем аэробной производительности. МПК можно определить, задавая стандартную нагрузку на велоэргометре. Зная величину нагрузки и подсчитав ЧСС, можно с помощью специальной номограммы определить уровень МПК. У незанимающихся спортом величина МПК составляет 35 - 45 мл на 1 кг веса, а у спортсменов, исходя из специализации, - 50-90 мл/кᴦ. Наибольшего уровня МПК достигает у спортсменов, занимающихся видами спорта͵ которые требуют большой аэробной выносливости, такими как бег на длинные дистанции, лыжные гонки, конькобежный спорт (длинные дистанции) и плавание (длинные дистанции). В этих видах спорта результат на 60-80% зависит от уровня аэробной производительности, ᴛ.ᴇ. чем выше уровень МПК, тем выше спортивный результат.

Уровень МПК в свою очередь зависит от возможностей двух функциональных систем: 1) системы, доставляющей кислород, включающей дыхательную и сердечно-сосудистую системы; 2) системы, утилизирующей кислород (обеспечивающей усвоение кислорода тканями).

Кислородный запрос.

Для выполнения любой работы, а также для нейтрализации продуктов обмена и восстановления энергетических запасов необходим кислород. Количество кислорода, ĸᴏᴛᴏᴩᴏᴇ требуется для выполнения определœенной работы - принято называть кислородным запросом.

Различают суммарный и минутный кислородный запрос.

Суммарный кислородный запрос - это количество кислорода, крайне важно е для совершения всœей работы (к примеру, для того, чтобы пробежать всю дистанцию).

Минутный кислородный запрос - это количество кислорода, требующееся для выполнения данной работы в каждую конкретную минуту.

Минутный кислородный запрос зависит от мощности выполняемой работы. Чем выше мощность, тем больше минутный запрос. Наибольшей величины он достигает на коротких дистанциях. К примеру, при беге на 800 м он составляет 12-15 л/мин, а при марафонском - 3-4 л/мин.

Суммарный запрос тем больше, чем больше время работы. При беге на 800 м он составляет 25-30 л, а при марафонском - 450-500 л.

При этом МПК даже спортсменов международного класса не превышает 6-6,5 л/мин и должна быть достигнуто только к третьей минуте. Как организм в таких условиях обеспечивает выполнение работы, к примеру, с минутными кислородным запросом в 40 л/мин (бег на 100 м)? В таких случаях работа идет в безкислородных условиях и обеспечивается за счёт анаэробных источников.

Анаэробная производительность.

Анаэробная производительность - это способность организма выполнять работу в условиях недостатка кислорода, обеспечивая энергетические расходы за счёт анаэробных источников.

Работа обеспечивается непосредственно запасами АТФ в мышцах, а также за счёт анаэробного ресинтеза АТФ с использованием КрФ и анаэробного расщепления глюкозы (гликолиза).

Для восстановления запасов АТФ и КрФ, а также для нейтрализации молочной кислоты, образовавшейся в результате гликолиза необходим кислород. Но эти окислительные процессы могут идти уже после окончания работы. Для выполнения любой работы требуется кислород, только на коротких дистанциях организм работает в долг, откладывая окислительные процессы на восстановительный период.

Количество кислорода, ĸᴏᴛᴏᴩᴏᴇ требуется для окисления продуктов обмена, образовавшихся при физической работе, принято называть - кислородным долгом.

Кислородный долг можно также определить как разницу между кислородным запросом и тем количеством кислорода, ĸᴏᴛᴏᴩᴏᴇ организм потребляет во время работы.

Чем выше минутный кислородный запрос и меньше время работы, тем больше кислородный долг в процентном отношении к суммарному запросу. Наибольший кислородный долг будет на дистанциях 60 и 100 м, где минутный запрос составляет около 40 л/мин, а время работы исчисляется секундами. Кислородный долг на этих дистанциях будет около 98% от запроса.

На средних дистанциях (800 – 3000м) увеличивается время работы, снижается ее мощность, а значит. возрастает потребление кислорода во время выполнения работы. В результате кислородный долг в процентном отношении к запросу уменьшается до 70 – 85%, но в связи со значительным увеличением суммарного кислородного запроса на этих дистанциях его абсолютная величина, измеряемая в литрах увеличивается.

Показателœем анаэробной производительности является - максимальный

кислородный долᴦ.

Максимальный кислородный долг -это максимально возможное накопление продуктов анаэробного обмена, требующих окисления, при котором организм еще способен выполнять работу. Чем выше тренированность, тем больше максимальный кислородный долᴦ. Так, к примеру, у людей, не занимающихся спортом, максимальный кислородный долг составляет, 4-5 л, а у спортсменов-спринтеров высокого класса может достигать 10-20 л.

В кислородном долге различают 2 фракции (части): алактатную и лактатную.

Алактатная фракция долга идет на восстановление запасов КрФ и АТФ в мышцах.

Лактатная фракция (лактаты - соли молочной кислоты) - большая часть кислородного долга. Она идет на ликвидацию молочной кислоты, накопившейся в мышцах. При окислении молочной кислоты образуются безвредные для организма вода и углекислый газ.

Алактатная фракция преобладает в физических упражнениях, длящихся не более 10с, когда работа идет в основном за счёт запасов АТФ и КрФ в мышцах. Лактатная преобладает при анаэробной работе большей длительности, когда интенсивно идут процессы анаэробного расщепления глюкозы (гликолиз) с образованием большого количества молочной кислоты.

Когда спортсмен работает в условиях кислородного долга, в организме накапливается большое количество продуктов обмена (прежде всœего молочной кислоты) и происходит сдвиг рН в кислую сторону. Чтобы спортсмен мог выполнять работу значительной мощности в таких условиях его ткани должны быть приспособлены к работе при недостатке кислорода и сдвиге рН. Это достигается тренировками на анаэробную выносливость (короткие скоростные упражнения с большой мощностью).

Уровень анаэробной производительности важен для спортсменов, работа

которых длится не более 7-8 минут. Чем больше время работы, тем меньше влияния на спортивный результат оказывают анаэробные возможности

Порог анаэробного обмена.

При интенсивной работе длящейся не менее 5-ти минут, наступает момент, когда организм не в состоянии обеспечить свои возрастающие потребности в кислороде. Поддержание достигнутой мощности работы и дальнейшее её увеличение обеспечивается за счёт анаэробных источников энергии.

Появление в организме первых признаков анаэробного ресинтеза АТФ - принято называть порогом анаэробного обмена (ПАНО). При этом анаэробные источники энергии включаются в ресинтез АТФ гораздо раньше, чем организм исчерпает свои возможности по обеспечению кислородом (ᴛ.ᴇ. раньше, чем достигнет своего МПК). Это является своеобразным ʼʼстраховочным механизмомʼʼ. Причем, чем менее тренированным является организм, тем раньше он начинает ʼʼстраховатьсяʼʼ.

ПAHO считается в процентах от МПК. У не тренированных людей первые признаки анаэробного ресинтеза АТФ (ПАНО) могут наблюдаться уже при достижении лишь 40% от уровня максимального потребления кислорода. У спортсменов исходя из квалификации ПАНО равен 50-80 % от МПК. Чем выше ПАНО, тем больше возможностей у организма выполнять тяжелую работу за счёт аэробных источников, более выгодных энергетически. По этой причине у спортсмена, имеющего высокий ПАНО (65% от МПК и выше), при прочих равных условиях будет более высокий результат на средних и длинных дистанциях.

Физиологическая характеристика физических упражнений.

Физиологическая классификация движений

(по Фарфелю B.C.).

I.Стереотипные (стандартные) движения.

1. Движения количественного значения.

Циклические.

Мощности работы: Виды локомоций:

‣‣‣ максимальная - движения, выполняемые ногами;

‣‣‣ субмаксимальная - движения, выполняемые при

‣‣‣ большая помощи рук.

‣‣‣ умеренная.

2. Движения качественного значения.

Виды спорта: Оцениваемые качества:

Спортивная и художественная - сила;

гимнастика; - быстрота;

Акробатика; -координация;

Фигурное катание; - равновесие;

Прыжки в воду; - гибкость;

Фристайл и т.д. - безопорность;

Выразительность.

Большая группа физических упражнений выполняется в строго постоянных условиях и характеризуется строгой постоянностью движений. Это группа стандартных (стереотипных) движений. Такие физические упражнения формируются по принципу двигательного динамического стереотипа.

При выполнении нестандартных движений отсутствует жесткий стереотип. В видах спорта с нестандартными движениями существуют определœенные стереотипы - приемы защиты и нападения, но в базе движений лежит реагирование на постоянно изменяющиеся условия. Действия спортсмена связаны с решением задач конкретного момента.


Чем больше мощность и емкость реализуемого энергопотенциала, а также эффективность его расходования, тем выше уровень здоровья индивида. Так как доля аэробной энергопродукции является преобладающей в общей сумме энергопотенциала, то именно максимальная величина аэробных возможностей организма является основным критерием его физического здоровья и жизнеспособности. Такое понятие биологической сущности здоровья полностью соответствует нашим представлениям об аэробной производительности, которая является физиологической основой общей выносливости и физической работоспособности (их величина детерминирована функциональными резервами основных систем жизнеобеспечения--кровообращения и дыхания). Таким образом, основным критерием здоровья следует считать величину МПК данного индивида. Именно МПК является количественным выражением уровня здоровья, показателем «количества» здоровья. Помимо МПК важным показателем аэробных возможностей организма является уровень порога анаэробного обмена (ПАНО), который отражает эффективность аэробного процесса. ПАНО соответствует такой интенсивности мышечной деятельности, при которой кислорода уже явно не хватает для полного энергообеспечения, резко усиливаются процессы бескислородного (анаэробного) образования энергии за счет расщепления веществ, богатых энергией (креатинфосфата и гликогена мышц), и накопления молочной кислоты.

При интенсивности работы на уровне ПАНО концентрация молочной кислоты в крови возрастает от 2,0 до 4,0 ммоль/л, что является биохимическим критерием ПАНО. Величина МПК характеризует мощность аэробного процесса, т. е. количество кислорода, которое организм способен усвоить (потребить) в единицу времени (за 1 мин). Она зависит в основном от двух факторов: функции кислородтранспортной системы и способности работающих скелетных мышц усваивать кислород. Ёкость крови (количество кислорода, которое может связать 100 мл артериальной крови за счет соединения его с гемоглобином) в зависимости от уровня тренированности колеблется в пределах от 18 до 25 мл. В венозной крови, оттекшей от работающих мышц, содержится не более 6--12 мл кислорода (на 100 мл крови). Это означает, что высококвалифицированные спортсмены при напряженной работе могут потреблять до 15--18 мл кислорода из каждых 100 мл крови. Если учесть, что при тренировке на выносливость у бегунов и лыжников минутный объем крови может возрастать до 30--35 л/мин, то указанное количество крови обеспечит доставку к работающим мышцам кислорода и его потребление до 5,0--6,0 л/мин--это и есть величина МПК. Таким, наиболее важным фактором, определяющим и лимитирующим величину максимальной аэробной производительности, является кислородтранспортная функция крови, которая зависит от кислородной емкости крови, а также сократительной и «насосной» функции сердца, определяющей эффективность кровообращения.

Не менее важную роль играют и сами «потребители» кислорода -- работающие скелетные мышцы. По своей структуре и функциональным возможностям различают два типа мышечных волокон - быстрые и медленные. Быстрые (белые) мышечные волокна--это толстые волокна, способные развивать большую силу и скорость мышечного сокращения, но не приспособленные к длительной работе на выносливость. В быстрых волокнах преобладают анаэробные механизмы энергообеспечения. Медленные (красные) волокна приспособлены к длительной малонотенсивной работе - за счет большого числа кровеносных капилляров, содержания миоглобина (мышечного гемоглобина) и большей активности окислительных ферментов. Это окислительные мышечные клетки, энергообеспечение которых осуществляется аэробным путем (за счет потребления кислорода). Поскольку состав мышечных волокон в основном генетически обусловлен, при выборе спортивной специализации этот фактор должен обязательно учитываться.

Рубрика "Биохимия". Аэробные и анаэробные факторы спортивной работоспособности. Биоэнергетические критерии физической работоспособности. Биохимические показатели уровня развития аэробной и анаэробных составляющих спортивной работоспособности. Соотношение в уровнях развития аэробной и анаэробных составляющих спортивной работоспособности у представителей различных видов спорта. Особенности биохимических изменений в организме в критических условиях мышечной деятельности.

Среди ведущих биохимических факторов, определяющих спортивную работоспособность наиболее важными являются биоэнергетические (аэробные и анаэробные) возможности организма. В зависимости от интенсивности и характера обеспечения, работу предложено делить на несколько категорий:

  • анаэробную (алактатную) зону мощности нагрузок;
  • анаэробную (гликолитическую) зону;
  • зону смешанного анаэробно-аэробного обеспечения (преобладают анаэробные процессы);
  • зону смешанного аэробно-анаэробного обеспечения (преобладают аэробные процессы);
  • зону аэробного энергообеспечения.

Анаэробная работа максимальной мощности (10-20 сек.) выполняется в основном на внутриклеточных запасах фосфагена (креатинфосфат + АТФ). Кислородный долг невелик, имеет алактатный характер и должен покрыть ресинтез израсходованных макроэргов. Существенного накопления лактата не происходит, хотя возможно вовлечение гликолиза в обеспечение таких кратковременных нагрузок и содержание лактата в работающих мышцах увеличивается.

Работа субмаксимальных мощностей в зависимости от темпа и продолжительности лежит в зонах анаэробного (гликолитического) и анаэробно-аэробного энергетического обеспечения. Ведущим становится вклад анаэробного гликолиза, что приводит к накоплению высоких внутриклеточных концентраций лактата, закислению среды, развитию дефицита НАД и аутоингибированию процесса. Лактат обладает хорошей, но конечной скоростью проникновения через мембраны и равновесие между его содержанием в мышцах и плазме устанавливается лишь спустя 5-10 мин. от начала работы.

При работе большой мощности преобладает аэробный путь энергообеспечения (75-98 %). Работа умеренной мощности характеризуется практически полным аэробным энергообеспечением и возможностью длительного выполнения от 1 час. до многих часов в зависимости от конкретной мощности. Существует значительное число показателей, используемых для выявления уровня развития, аэробного и анаэробного механизмов преобразования энергии.

Одним из них дают интегральную оценку этих механизмов, другие – позволяют охарактеризовать различные их стороны (скорость развертывания, мощность, емкость, эффективность) или состояние какого-либо отдельного звена или этапа. Наиболее информативными являются показатели, регистрируемые при выполнении тестирующих нагрузок, вызывающих близкую к предельной активацию соответствующих процессов преобразования энергии. При этом следует учесть, что анаэробные процессы обладают высокой специфичностью и в наибольшей мере включаются в энергетическое обеспечение только того вида деятельности, в котором спортсмен прошел специальную тренировку. Это значит, что для оценки возможностей использования анаэробных процессов энергообеспечения работы, у велосипедистов наиболее подходят велоэргометрические тесты, у бегунов – бег и т.д.

Большое значение для выявления возможностей использования различных процессов энергообеспечения имеют мощность, продолжительность и характер выполняемого тестирующего упражнения. Например, для оценки уровня развития алактатного анаэробного механизма наиболее подходящими являются кратковременные (20-30 сек.) упражнения, выполняемые с максимальной интенсивностью. Наибольшие сдвиги, связанные с участием гликолитического анаэробного механизма энергообеспечения работы обнаруживаются при выполнении упражнений длительностью 1-3 мин. с предельной для этой продолжительности интенсивностью. Примером может быть работа, состоящая из 2-4 повторных упражнений, продолжительностью около 1 мин., выполняемые через равные или сокращающиеся интервалы отдыха. Каждое повторное упражнение должно выполняться с наибольшей возможной интенсивностью. Состояние аэробных и анаэробных процессов энергообеспечения мышечной работы можно охарактеризовать с помощью теста со ступенчатым увеличением нагрузки до "отказа".
Показателями, характеризующими уровень анаэробных систем, являются величины алактатного и лактатного кислородного долга, природа которых рассмотрена ранее. Информативными показателями глубины гликолитических анаэробных сдвигов являются максимальная концентрация молочной кислоты в крови, показатели активной реакции крови (рН) и сдвига буферных оснований (ВЕ).

Для оценки уровня развития аэробных механизмов энергообразования используется определение максимального потребления кислорода (МПК) – наибольшего кислородного потребления в единицу времени, которое может быть достигнуто в условиях напряженной мышечной работы.
МПК характеризует максимальную мощность аэробного процесса и носит интегральный (обобщенный) характер, так как способность вырабатывать энергию в аэробных процессах определяется совокупной деятельностью многих органов и систем организма, ответственных за утилизацию, транспорт и использование кислорода. В видах спорта, где основным источником энергии является аэробный процесс, наряду с мощностью, большое значение имеет его емкость. В качестве показателя емкости используется время удержания максимального кислородного потребления. Для этого вместе с величиной МПК определяется значение «критической мощности»- наименьшей мощности упражнения, при которой достигается МПК. Для этих целей наиболее удобен тест со ступенчатым увеличением нагрузки. Затем (обычно на следующий день) спортсменам предлагается выполнить работу на уровне критической мощности. Фиксируется время, в течение которого может удерживаться «критическая мощность» и изменяется потребление кислорода. Время работы на «критической мощности» и время удержания МПК хорошо коррелируют между собой и являются информативными в отношении емкости аэробного пути ресинтеза АТФ.

Как известно, начальные этапы любой достаточно напряженной мышечной работы обеспечиваются энергией за счет анаэробных процессов. Основная причина этого – инертность систем аэробного энергообеспечения. После развертывания аэробного процесса до уровня, соответствующего мощности выполняемого упражнения, могут возникнуть две ситуации:

  1. аэробные процессы полностью справляются с энергообеспечением организма;
  2. наряду с аэробным процессом в энергообеспечении участвует анаэробный гликолиз.

Исследованиями показано, что в упражнениях, мощность которых еще не достигла «критической», и, следовательно, аэробные процессы не развернулись до максимального уровня, в энергетическом обеспечении работы на всем ее протяжении может участвовать анаэробный гликолиз. Та наименьшая мощность, начиная с которой в выработке энергии на всем протяжении работы, наряду с аэробными процессами, принимает участие гликолиз, получила название "порога анаэробного обмена" (ПАНО) . Мощность ПАНО принято выражать в относительных единицах – уровнем потребления кислорода (в процентах от МПК), достигнутым во время работы. Улучшение тренированности к нагрузкам аэробной направленности сопровождается повышением ПАНО. Значение ПАНО зависит в первую очередь от особенностей аэробных механизмов энергообразования в частности, от их эффективности. Так как эффективность аэробного процесса может претерпевать изменения, например, за счет изменения сопряженности окисления с фосфорилированием, представляет интерес оценки этой стороны функциональной готовности организма. Наиболее важны внутри индивидуальные изменения этого показателя на разных этапах тренировочного цикла. Оценить эффективность аэробного процесса можно также в тесте со ступенчатым увеличением нагрузки при определении уровня кислородного потребления на каждой ступени.
Итак, участие анаэробных и аэробных процессов в энергетическом обеспечении мышечной деятельности определяется, с одной стороны, мощностью и другими особенностями выполняемого упражнения, с другой - кинетическими характеристиками (максимальная мощность, время удержания максимальной мощности, максимальная емкость и эффективность) процессов энергообразования.
Рассмотренные кинетические характеристики зависят от совместного действия множества тканей и органов и по-разному изменяются под воздействием тренировочных упражнений. Эту особенность ответной реакции биоэнергетических процессов на тренировочные нагрузки необходимо учитывать при составлении тренировочных программ.

Природа предоставила нам возможность работать и в условияхнедостаточного снабжения тканей кислородом . При нехватке кислорода различают две реакции восстановления АТФ:

  • алактатную ) , т.е. без образования молочной кислоты(лактат – молочная кислота) ;
  • лактатную , т.е. с ее образованием.

Первая реакция (анаэробная алактатная ) – распад особого химического соединения –креатинфосфатной кислоты (КрФ), обеспечивающий быстрое восстановление АТФ. Однако запасы КрФ также ограничены и при максимально интенсивной работе быстро (в течение 10 сек) исчерпываются.

Вторая реакция (анаэробная лактатная ) – восстановление АТФ за счет энергии, образующейся при распадегликогена.

Анаэробная производительность (анаэробные возможности организма) – это способность человека работать в условиях недостатка кислорода за счет анаэробных источников энергии. Она зависит от ряда факторов (см. рис. 1).

Увеличение количества гликогена в мышцах

Увеличение количества креатинфосфата в мышцах

Анаэробная

производительность

Возрастание активности ферментных систем, катализирующих анаэробные реакции

Повышение устойчивости организма к высокой концентрации молочной кислоты в мышцах и крови

Рис. 1. Факторы, обеспечивающие анаэробную производительность организма (по В.М.Волкову, Е.Г.Мильнеру, 1987).

В процессе распада глюкозы образуется (при недостатке кислорода) молочная кислота. Накопление молочной кислоты в организме приводит к изменениюкислотно-щелочного равновесия (рН). Когда в организме накапливается слишком большое количество кислых продуктов обмена веществ, человек вынужден прекратить работу.

Для ликвидации этих продуктов также нужен кислород, ибо они разрушаются путем окисления. Но окисление это может происходить уже после окончания работы, ввосстановительный период .

Количество кислорода, которое требуется для окисления продуктов обмена, образовавшихся при физической работе, называетсякислородным долгом .

Кислородный долг главнейший показатель анаэробной производительности . Максимальный кислородный долг у людей, не занимающихся спортом, не превышает 4–5 л. У спортсменов высокого класса он может достигать 10–20 л.

Различают две части кислородного долга:алактатную илактатную.

Алактатная часть может составлять у спортсменов 2–4 л. Она идет на восстановление КрФ, отдавшего свою энергию ресинтезу АТФ, а также на восстановление израсходованных при работе запасов АТФ в мышцах.

Лактатная , большаячасть кислородного долга идет на ликвидацию накопившейся при работе в мышцах и крови молочной кислоты, которая в восстановительном периоде частично окисляется, частично используется при образовании запасов углеводов в печени и мышцах.

Содержание молочной кислоты у спортсменов высокого класса может доходить до 300 мг в 100 мл крови (в покое – 10–15 мг). Чтобы продолжать при этом работу, организм должен иметь мощныебуферные системы . У спортсменов мощность буферных систем крови и других тканей повышена. Но все же буферные системы не всегда могут полностью нейтрализовать кислые продукты обмена веществ, поступающие в кровь. Тогда происходит сдвиг рН крови вкислую сторону. Чтобы человек мог выполнять работу значительной мощности в условиях резких изменений внутренней среды организма, его ткани должны быть приспособлены к работе при недостатке кислорода и низком рН. Такое приспособление тканей служит одним из главных факторов, обеспечивающих высокую анаэробную производительность. Кроме того, способность человека работать при большом количестве накопившейся молочной кислоты во многом зависит и от кровоснабжения мозга и сердца. Эти органы должны получать достаточно кислорода даже в тех условиях, когда скелетные мышцы испытывают его дефицит.

Порог анаэробного обмена. При большой интенсивности бега дальнейшее увеличение скорости происходит за счет анаэробных источников энергии. Однако анаэробные процессы при беге включаются в восстановление АТФ не в тот момент, когда достигнут максимальный уровень потребления кислорода (МПК), а несколько раньше. Появление в организме первых признаков анаэробного ресинтеза АТФ называютпорогом анаэробного обмена (ПАНО). Измеряется ПАНО в процентах от МПК. У спортсменов разной квалификации ПАНО равен 50–70 % от уровня максимального потребления кислорода. Это значит, что анаэробный ресинтез АТФ начинается, когда потребление кислорода достигает 50–70 % от МПК данного человека. Чем выше ПАНО, тем более тяжелую работу спортсмен выполняет, восстанавливая АТФ за счет более экономных аэробных источников энергии .

Кислотно-щелочное равновесие и буферные зоны. В плазме крови содержатся ионы водорода. Они входят в состав всех кислот, и поэтому от их концентрации в крови зависит еекислотность. Для характеристики кислотности крови пользуются водородным показателем, обозначаемымрН (водородный показатель – логарифм концентрации водородных ионов, взятый с обратным знаком). Для дистиллированной воды величина рН составляет 7,07; кислая среда имеет рН меньше, щелочная – больше. Водородный показатель артериальной крови в среднем равен 7,4, венозной – несколько меньше. Это означает, что кровь имеетслабокислую реакцию . При физической работе в плазму крови попадает большое количество кислых продуктов обмена веществ. Однако при самой тяжелой работе рН крови не падает ниже 7,0. При большом сдвиге рН крови в кислую сторону человек вынужден прекратить работу.

Кислотно-щелочное равновесие в крови и тканях обеспечивается наличием в них особых веществ, образующих буферные системы. Существует несколько буферных систем:

  • карбонатная система , деятельность которой обусловлена угольной кислотой и ее солями;
  • фосфатная система , в состав которой входят соли фосфорной кислоты;
  • буферная система белков плазмы ;
  • буферная система гемоглобина (ей принадлежит самая большая роль, так как она обеспечивает около 75 % буферной способности крови).

К примеру, если в кровь поступает какая-либокислота , более сильная, чем угольная (например, молочная), она вступает в реакцию с бикарбонатом. В результате образуется соль этой кислоты и угольная кислота, которая расщепляется на СО 2 и Н 2 О. Углекислота выделяется из организма через легкие, что обеспечивает сохранение рН крови на постоянном уровне. Если в кровь поступаютщелочные продукты , то они связываются кислотами буферных систем. Это предохраняет организм от сдвига рН крови и тканей в щелочную сторону.

Щелочи буферных систем крови, способные связывать кислоты, образующиеся в процессе обмена веществ, называютсящелочным резервом . Он определяется количеством углекислого газа (вмл ), находящегося в химически связанном состоянии (т.е. в виде Н 2 СО 3 и NаHCO 3) в 100 мл плазмы крови. У здорового человека этот показатель равен 50–65 мл.

Постоянство рН тканей и крови обеспечивается легкими (освобождение организма от углекислого газа), почками и потовыми железами.

При интенсивной физической работе в кровь поступает значительное количество недоокисленных продуктов обмена, с повышением мощности работы их количество увеличивается. Например, содержание молочной кислоты может достигать 200–250 мг в 100 мл крови, т.е. увеличиться в 20–25 раз по сравнению с состоянием покоя.

Занятия оздоровительным бегом повышают возможности буферных систем крови и тканей.

Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png