Словосочетание «Большой адронный коллайдер» настолько глубоко осело в массмедиа, что о данной установке знает подавляющее количество людей, в числе которых и те, чья деятельность никоим образом не связано с физикой элементарных частиц, и с наукой вообще.

Действительно, столь масштабный и дорогой проект не мог обойти стороной СМИ - кольцевая установка длиной почти в 27 километров, ценою в десяток миллиардов долларов, с которой работает несколько тысяч научных сотрудников со всего мира. Немалую лепту в популярность коллайдера внесла так называемая «частица Бога» или бозон Хиггса, который был успешно разрекламирован, и за который Питер Хиггс получил нобелевскую премию по физике в 2013-м году.

Прежде всего следует отметить, что Большой адронный коллаейдер не строился с нуля, а возник на месте своего предшественника — Большого электрон-позитронного коллайдера (Large Electron-Positron collider или LEP). Работа над 27-микилометровом тоннелем началась в 1983-м году, где в дальнейшем планировалось расположить ускоритель, который будет осуществлять столкновение электроном и позитронов. В 1988-м году кольцевой тоннель сомкнулся, при этом рабочие подошли к проведению тоннеля столь тщательно, что расхождение между двумя концами тоннеля составило всего 1 сантиметр.

Ускоритель проработал до конца 2000-го года, когда достиг своего пика - энергии в 209 ГэВ. После этого начался его демонтаж. За одиннадцать лет своей работы LEP принес физике ряд открытий, в числе которых - открытие W и Z бозонов и их дальнейшие исследования. На основе результатов этих исследований был сделан вывод о сходстве механизмов электромагнитного и слабого взаимодействий, вследствие чего начались теоретические работы по объединению этих взаимодействий в электрослабое.

В 2001-м году на месте электрон-позитронного ускорителя началась постройка Большого адронного коллайдера. Строительство нового ускорителя завершилось в конце 2007-го года. Он располагался на месте LEP - на границе между Францией и Швейцарией, в долине Женевского озера (в 15 км от Женевы), на глубине ста метров. В августе 2008-го года начались испытания коллайдера, а 10-го сентября произошел официальный запуск БАКа. Как и в случае с предыдущим ускорителем, строительство и работа с установкой возглавляется Европейской организацией по ядерным исследованиям - ЦЕРН.

ЦЕРН

Вкратце стоит сказать об организации CERN (Conseil Européenne pour la Recherche Nucléaire). Данная организация выступает в роли крупнейшей мировой лаборатории в области физики высоких энергий. Включает три тысячи постоянных сотрудников, и еще несколько тысяч исследователей и ученых из 80 стран принимают участие в проектах ЦЕРНа.

На данный момент участниками проекта является 22 страны: Бельгия, Дания, Франция, Германия, Греция, Италия, Нидерланды, Норвегия, Швеция, Швейцария, Великобритания - учредители, Австрия, Испания, Португалия, Финляндия, Польша, Венгрия, Чехия, Словакия, Болгария и Румыния - присоединившиеся. Однако, как уже было сказано выше - еще несколько десятков стран так или иначе принимают участие в работе организации, и в частности - на Большом адронном коллайдере.

Как работает Большой адронный коллайдер?

Что такое Большой адронный коллайдер и как он работает - основные вопросы, интересующие общественность. Рассмотрим эти вопросы далее.

Коллайдер (collider) - в переводе с английского означает «тот, кто сталкивает». Задача такой установки состоит в столкновении частиц. В случае с адроннмы коллайдером, в роли частиц выступают адроны - частицы, участвующие в сильном взаимодействии. Таковыми являются протоны.

Получение протонов

Долгий путь протонов берет свое начало в дуоплазматроне - первой ступени ускорителя, куда поступает водород в виде газа. Дуоплазматрон представляет собой разрядную камеру, где через газ проводится электрический разряд. Так водород, состоящий всего из одного электрона и одного протона, теряет свой электрон. Таким образом образуется плазма - вещество, состоящее из заряженных частиц - протонов. Конечно, получить чистую протонную плазму сложно, поэтому далее образованная плазма, включающая также облако молекулярных ионов и электронов, проходит фильтрацию для выделения облака протонов. Под действием магнитов протонная плазма сбивается в пучок.

Предварительный разгон частиц

Новообразованный пучок протонов начинает свой путь в линейном ускорителе LINAC 2, который представляет собой 30-тиметровое кольцо, последовательно увешенное несколькими полыми цилиндрическими электродами (проводниками). Создаваемое внутри ускорителя электростатическое поле градуировано таким образом, что частицы между полыми цилиндрами всегда испытывают ускоряющую силу в направлении следующего электрода. Не углубляясь целиком в механизм разгона протонов на данном этапе, отметим лишь, что на выходе с LINAC 2 физики получают пучок протонов с энергией 50 МэВ, которые уже достигают 31% скорости света. Примечательно, что при этом масса частиц возрастает на 5%.

К 2019-2020-му году планируется замена LINAC 2 на LINAC 4, который будет разгонять протоны до 160 МэВ.

Стоит отметить, что на коллайдере также разгоняют ионы свинца, которые позволят изучить кварк-глюонную плазму. Их разгоняют в кольце LINAC 3, аналогичном LINAC 2. В дальнейшем также планируются эксперименты с аргоном и ксеноном.

Далее пакеты протонов поступают в протон-синхронный бустер (PSB). Он состоит из четырех наложенных колец диаметром 50 метров, в которых располагаются электромагнитные резонаторы. Создаваемое ими электромагнитное поле имеет высокую напряженность, и проходящая через него частица получает ускорение в результате разности потенциалов поля. Так спустя всего 1,2 секунды частицы разгоняются в PSB до 91% скорости света и достигают энергии в 1,4 ГэВ, после чего поступают в протонный-синхротрон (PS). Диаметр PS составляет 628 метров и оснащен 27 магнитами, направляющими пучок частиц по круговой орбите. Здесь частиц протоны достигают 26 ГэВ.

Предпоследним кольцом для разгона протонов служит Суперпротонный-синхротрон (SPS), длина окружности которого достигает 7 километров. Будучи оснащенным 1317-ю магнитами SPS разгоняет частицы до энергии в 450 ГэВ. Спустя примерно 20 минут пучок протонов попадает в основное кольцо - Большой адронный коллайдер (LHC).

Разгон и столкновение частиц в LHC

Переходы между кольцами ускорителей происходят посредством электромагнитных полей, создаваемых мощными магнитами. Основное кольцо коллайдеро состоит из двух параллельных линий, в которых частицы движутся по кольцевой орбите в противоположном направлении. За сохранение круговой траектории частиц и направление их в точки столкновения отвечают около 10 000 магнитов, масса некоторых из них достигает 27 тонн. Во избежание перегрева магнитов используется контур гелия-4, по которому протекает примерно 96 тонн вещества при температуре -271,25 ° С (1,9 К). Протоны достигают энергии в 6,5 ТэВ (то есть энергия столкновения - 13 ТэВ), при этом их скорость на 11 км/ч меньше скорости света. Таким образом за секунду пучок протонов проходит большое кольцо коллайдера 11 000 раз. Прежде, чем произойдет столкновение частиц, они будут циркулировать по кольцу от 5 до 24 часов.

Столкновение частиц происходит в четырех точках основного кольца LHC, в которых располагаются четыре детектора: ATLAS, CMS, ALICE и LHCb.

Детекторы Большого адронного коллайдера

ATLAS (A Toroidal LHC ApparatuS)

— является одним из двух детекторов общего назначения на Большом адронном коллайдере (LHC). Он исследует широкий спектр физики: от поиска бозона Хиггса до частиц, которые могут составлять темную материю. Хотя он имеет те же научные цели, что и эксперимент CMS, ATLAS использует иные технические решения и другую конструкцию магнитной системы.

Пучки частиц из LHC сталкиваются в центре детектора ATLAS, образуя встречные обломки в виде новых частиц, которые вылетают из точки столкновения во всех направлениях. Шесть различных детектирующих подсистем, расположенных в слоях вокруг точки столкновения, записывают пути, импульс и энергию частиц, позволяя их индивидуально идентифицировать. Огромная система магнитов искривляет пути заряженных частиц, так что их импульсы можно измерить.

Взаимодействия в детекторе ATLAS создают огромный поток данных. Чтобы обработать эти данные, ATLAS использует расширенную «триггерную» систему, позволяющую сообщать детектору, какие события записывать, а какие игнорировать. Затем для анализа зарегистрированных событий столкновения используются сложные системы сбора данных и вычисления.

Детектор имеет высоту 46 метров и ширину - 25 метров, при этом его масса составляет 7 000 тонн. Эти параметры делает ATLAS самым большим детектором частиц, когда-либо созданным. Он находится в тоннеле на глубине в 100 м вблизи главного объекта ЦЕРН, недалеко от деревни Мейрин в Швейцарии. Установка состоит из 4 основных компонентов:

  • Внутренний детектор имеет цилиндрическую форму, внутреннее кольцо находится всего в нескольких сантиметрах от оси проходящего пучка частиц, а внешнее кольцо имеет диаметр в 2,1 метра и длину 6,2 метра. Он состоит из трех различных систем датчиков, погруженных в магнитное поле. Внутренний детектор измеряет направление, импульс и заряд электрически заряженных частиц, образующихся при каждом протон-протонном столкновении. Основные элементы внутреннего детектора: пиксельный детектор (Pixel Detector), полупроводниковая система слежения (Semi-Conductor Tracker, SCT) и трековый детектор переходного излучения (Transition radiation tracker, TRT).

  • Калориметры измеряют энергию, которую частица теряет, когда проходит через детектор. Он поглощает частицы, возникающие при столкновении, тем самым фиксирую их энергию. Калориметры состоят из слоев «поглощающего» материала с высокой плотностью — свинца, чередующегося со слоями «активной среды» — жидкого аргона. Электромагнитные калориметры измеряют энергию электронов и фотонов при взаимодействии с веществом. Адронные калориметры измеряют энергию адронов при взаимодействии с атомными ядрами. Калориметры могут останавливать большинство известных частиц, кроме мюонов и нейтрино.

LAr (Liquid Argon Calorimeter) — калориметр ATLAS

  • Мюонный спектрометр - состоит из 4000 индивидуальных мюонных камер, использующих четыре различные технологи, позволяющие, идентифицировать мюоны и измерить их импульсы. Мюоны обычно проходят через внутренний детектор и калориметр, а потому требуется наличие мюонного спектрометра.

  • Магнитная система ATLAS изгибает частицы вокруг различных слоев детекторных систем, что упрощает отслеживание треков частиц.

В эксперименте ATLAS (февраль 2012 г.) работают более 3 000 ученых из 174 институтов из 38 стран.

CMS (Compact Muon Solenoid)

— является детектором общего назначения на Большом адронном коллайдере (LHC). Как и ATLAS, имеет широкую физическую программу, начиная от изучения стандартной модели (включая бозон Хиггса) до поиска частиц, которые могут составлять темную материю. Хотя он имеет те же научные цели, что и эксперимент ATLAS, CMS использует иные технические решения и другую конструкцию магнитной системы.

Детектор CMS построен вокруг огромного магнита соленоида. Представляет собой цилиндрическую катушку сверхпроводящего кабеля, которая генерирует поле в 4 тесла, примерно в 100 000 раз превышающее магнитное поле Земли. Поле ограничено стальным «хамутом», который является массивнейшим компонентом детектора, масса которого — 14 000 тонн. Полный детектор имеет длину — 21 м, ширину — 15 м и высоту — 15 м. Установка состоит из 4 основных компонентов:

  • Магнит соленоида - крупнейший магнит в мире, который служит для изгиба траектории заряженных частиц, вылетающих из точки столкновения. Искажение траектории позволяет различить положительно и отрицательно заряженные частицы (т.к. они изгибаются в противоположных направлениях), а также измерить импульс, величина которого зависит от кривизны траектории. Огромные размеры соленоида позволяют расположить трекер и калориметры внутри катушки.
  • Кремниевый трекер — состоит из 75 миллионов отдельных электронных датчиков, расположенных в концентрических слоях. Когда заряженная частица пролетает через слои трекера, она передает часть энергии каждому слою, объединение этих точек столкновения частицы с различными слоями позволяет в дальнейшем определить ее траекторию.
  • Калориметры - электронный и адронный см. калориметры ATLAS.
  • Саб-детекторы - позволяют детектировать мюоны. Представлены 1 400 мюонными камерами, которые слоями располагаются вне катушки, чередуясь с металлическими пластинами «хамута».

Эксперимент CMS является одним из крупнейших международных научных исследований в истории, в котором принимают участие 4300 человек: физики в области элементарных частиц, инженеры и техники, студенты и вспомогательный персонал из 182 институтов, 42 стран (февраль 2014 года).

ALICE (A Large Ion Collider Experiment)

— представляет собой детектор тяжелых ионов на кольцах большого адронного коллайдера (LHC). Он предназначен для изучения физики сильно взаимодействующего вещества при экстремальных плотностях энергии, где образуется фаза вещества, называемая кварк-глюонной плазмой.

Вся обычная материя в сегодняшней вселенной состоит из атомов. Каждый атом содержит ядро, состоящее из протонов и нейтронов (кроме водорода, не имеющего нейтронов), окруженного облаком электронов. Протоны и нейтроны, в свою очередь, состоят из кварков, связанных вместе с другими частицами, называемыми глюонами. Никакой кварк никогда не наблюдался изолированно: кварки, а также глюоны, по-видимому, постоянно связаны вместе и ограничены внутри составных частиц, таких как протоны и нейтроны. Это называется конфайнментом.

Столкновения в LHC создают температуры более чем в 100 000 раз более горячее, чем в центре Солнца. Колллайдер обеспечивает столкновения между свинцовыми ионами, воссоздавая условия, аналогичные тем, которые имели место сразу после Большого Взрыва. В этих экстремальных условиях протоны и нейтроны «расплавляются», освобождая кварки от их связей с глюонами. Это и есть кварк-глюонная плазма.

В эксперименте ALICE используется детектор ALICE массой 10 000 тонн, 26 м в длину, 16 м в высоту и 16 м в ширину. Устройство состоит из трех основных комплектов компонентов: трэкинговых устройств, калориметров и детекторов-идентификаторов частиц. Также его разделяют на 18 модулей. Детектор находится в тоннеле на глубине 56 м под, недалеко от деревни Сент-Денис-Пуйи во Франции.

Эксперимент насчитывает более 1 000 ученых из более чем 100 институтов физики в 30 странах.

LHCb (Large Hadron Collider beauty experiment)

В рамках эксперимента проводится исследование небольших различий между веществом и антиматерией, изучая тип частицы, называемый «бьюти-кварк» или «b-кварк».

Вместо того, чтобы окружать всю точку столкновения с помощью закрытого детектора, как ATLAS и CMS, эксперимент LHCb использует серию сабдетекторов для обнаружения преимущественно передних частиц — тех, которые были направлены вперед в результате столкновения в одном направлении. Первый сабдетектор установлен близко к точке столкновения, а остальные — один за другим на расстоянии 20 метров.

На LHC создается большое изобилие различных типов кварков, прежде чем они быстро распадаются на другие формы. Чтобы поймать b-кварки, для LHCb были разработаны сложные движущиеся следящие детекторы, расположенные вблизи движения пучка частиц по коллайдеру.

5600-тонный детектор LHCb состоит из прямого спектрометра и плоских детекторов. Это 21 метр в длину, 10 метров в высоту и 13 метров в ширину, он находится на глубине 100 метров под землей. Около 700 ученых из 66 различных институтов и университетов вовлечены в эксперимент LHCb (октябрь 2013 г.).

Другие эксперименты на коллайдере

Помимо вышеперечисленных экспериментов на Большом адронном коллайдере есть другие два эксперимента с установками:

  • LHCf (Large Hadron Collider forward) — изучает частицы, выброшенные вперед после столкновения пучков частиц. Они имитируют космические лучи, исследованием которых и занимаются ученые в рамках эксперимента. Космические лучи — это естественные заряженные частицы из космического пространства, которые постоянно бомбардируют земную атмосферу. Они сталкиваются с ядрами в верхней атмосфере, вызывая каскад частиц, которые достигают уровня земли. Изучение того, как столкновения внутри LHC вызывают подобные каскады частиц, поможет физикам интерпретировать и откалибровать крупномасштабные эксперименты с космическими лучами, которые могут охватывать тысячи километров.

LHCf состоит из двух детекторов, которые расположены вдоль LHC, на расстоянии 140 метров с обеих сторон он точки столкновения ATLAS. Каждый из двух детекторов весит всего 40 килограммов и имеет размеры 30 см в длину, 80 см в высоту и 10 см в ширину. В эксперименте LHCf участвуют 30 ученых из 9 институтов в 5 странах (ноябрь 2012 г.).

  • TOTEM (Total Cross Section, Elastic Scattering and Diffraction Dissociation) - эксперимент с самой длинной установкой на коллайдере. Его задачей является исследование самих протонов, путем точного измерения протонов, возникающих при столкновениях под малыми углами. Эта область известна как «прямое» направление и недоступна другим экспериментам LHC. Детекторы TOTEM распространяются почти на полкилометра вокруг точки взаимодействия CMS. TOTEM имеет почти 3 000 кг оборудования, в том числе четыре ядерных телескопа, а также 26 детекторов типа «римский горшок». Последний тип позволяет расположить детекторы максимально близко к пучку частиц. Эксперимент TOTEM включает около 100 ученых из 16 институтов в 8 странах (август 2014 года).

Зачем нужен Большой адронный коллайдер?

Крупнейшая международная научная установка исследует широкий спектр физических задач:

  • Изучение топ-кварков. Данная частица является не только самым тяжелым кварком, но и самой тяжелой элементарной частицей. Исследование свойств топ-кварка также имеет смысл, потому что он является инструментом для исследования .
  • Поиск и изучение бозона Хиггса. Хотя ЦЕРН утверждает, что бозон Хиггса был уже обнаружен (в 2012-м году), пока о его природе известно совсем немного и дальнейшие исследования могли бы внести большую ясность в механизм его работы.

  • Изучение кварк-глюонной плазмы. При столкновениях ядер свинца на больших скоростях - в коллайдере образуется . Ее исследование может принести результаты, полезные как для ядерной физики (улучшение теории сильных взаимодействий), так и для астрофизики (изучение Вселенной в ее первые моменты существования).
  • Поиск суперсимметрии. Это исследование направлено на опровержение или доказательство «суперсимметрии» — теории, согласно которой любая элементарная частица имеет более тяжелого партнера, называемого «суперчастицей».
  • Исследование фотон-фотонных и фотон-адронных столкновений. Позволит улучшить понимание механизмов процессов подобных столкновений.
  • Проверка экзотических теорий. К этой категории задач относятся самые нетрадиционные - «экзотические», например, поиск параллельных вселенных посредством создания мини-черных дыр.

Кроме этих задач, существует еще множество других, решение которых также позволит человечеству понимать природу и окружающий нас мир на более качественном уровне, что в свою очередь откроет возможности для создания новых технологий.

Практическая польза Большого адронного коллайдера и фундаментальной науки

Прежде всего, следует отметить, что фундаментальные исследования привносят вклад в фундаментальную науку. Применением же этих знаний занимается прикладная наука. Сегмент общества, не осведомленный в пользе фундаментальной науки зачастую не воспринимает открытие бозона Хиггса или создание кварк-глюонной плазмы, как нечто значимое. Связь подобных исследований с жизнью рядового человека - неочевидно. Рассмотрим краткий пример с атомной энергетикой:

В 1896-м году французский физик Антуан Анри Беккерель открыл явление радиоактивности. Долгое время считалось, что к ее промышленному использованию человечество перейдет нескоро. Всего за пять лет до запуска первого в истории ядерного реактора великий физик Эрнест Резерфорд, собственно открывший атомное ядро в 1911-м году, говорил, что атомная энергия никогда не найдет своего применения. Переосмыслить свое отношение к энергии, заключенной в ядре атома, специалистам удалось в 1939 году, когда немецкие ученые Лиза Мейтнер и Отто Ган обнаружили, что ядра урана при облучении их нейтронами делятся на две части с выделением огромного количества энергии — ядерной энергии.

И лишь после этого последнего звенья ряда фундаментальных исследований в игру вступила прикладная наука, которая на основе этих открытий изобрела устройство для получения ядерной энергии - атомный реактор. Масштаб открытия можно оценить, ознакомившись с долей выработки электроэнергии атомными реакторами. Так в Украине, например, на АЭС выпадает 56% выработки электроэнергии, а во Франции и вовсе - 76%.

Все новые технологии основываются на тех или иных фундаментальных знаниях. Приведем еще пару кратких примеров:

  • В 1895-м году Вильгельм Конрад Рентген заметил, что под действием рентгеновского излучения фотопластинка затемняется. Сегодня рентгенография - одно из наиболее применяемых исследований в медицине, позволяющая изучить состояние внутренних органов и обнаружить инфекции и опухали.
  • В 1915-м году Альберт Эйнштейн предложил свою . Сегодня эта теория учитывается при работе GPS спутников, которые определяют местоположение объекта с точностью до пары метров. GPS применяется в сотовой связи, картографии, мониторинге транспорта, но в первую очередь - в навигации. Погрешность спутника, не учитывающего ОТО, с момента запуска росла бы на 10 километров в день! И если пешеход может воспользоваться разумом и бумажной картой, то пилоты авиалайнера попадут в затруднительную ситуацию, так как ориентироваться по облакам - невозможно.

Если сегодня практическое применение открытиям, произошедшим на LHC еще не найдено - это не значит, что ученые «возятся на коллайдере зря». Как известно, человек разумный всегда намеревается получить максимум практического применения из имеющихся знаний, а потому знания о природе, накопленные в процессе исследования на БАК, определенно найдут свое применение, рано или поздно. Как уже было продемонстрировано выше - связь фундаментальных открытий и использующих их технологий иногда может быть совсем не очевидна.

Напоследок, отметим так называемые косвенные открытия, которые не ставятся как изначальные цели исследования. Они встречаются довольно часто, так как для совершения фундаментального открытия, обычно, требуется внедрение и использование новых технологий. Так развитие оптики получило толчок от фундаментальных исследований космоса, строящихся на наблюдениях астрономов через телескоп. В случае с ЦЕРН - так возникла повсеместно применяемая технология - Интернет, проект, предложенный Тимом Бернерсом-Ли в 1989-м году для облегчения поиска данных организации ЦЕРН.

На этой неделе, спустя два года ожиданий, Большой адронный коллайдер - ускоритель заряженных частиц, благодаря которому в 2012 году открыли бозон Хиггса - могут снова запустить.

Гигантский коллайдер (частью которого является подземный туннель на границе Франции и Швейцарии длиною в 27 километров) был отключен в феврале 2013 года, чтобы учёные могли внести изменения в его конструкцию. Теперь же учёные вновь включают его, чтобы при помощи серии экспериментов совершить скачок в изучении физики.

1. Постойте-постойте, а что такое Большой адронный коллайдер?

Туннель Большого адронного коллайдера
БАК был построен в 2008 году организацией CERN (Европейский совет ядерных исследований). Создание самого большого в мире адронного коллайдера обошлось в девять миллиардов долларов. Невероятная длина его подземных туннелей позволяет физикам проводить невероятные эксперименты.

Грубо говоря, чаще всего эксперименты включают в себя разгон заряженных частиц до 99.9999% от скорости света (заставляя их перемещаться по кругу 11000 раз в секунду) и последующее их столкновение при помощи гигантских магнитов. Сложные сенсоры считывают всевозможную информацию, полученную после столкновения этих частиц.

2. Зачем учёным сталкивать частицы?


Информация, полученная одним из сенсоров, в БАК
Огромное количество энергии, которое выделяется после столкновения, заставляет частицы распадаться и в последствии собираться в довольно-таки необычные конструкции. Подобные эксперименты помогают найти недостатки в стандартной модели физики - на данный момент это лучший способ предсказать поведение частиц.

Физикам интересны такие эксперименты потому, что, хоть стандартная модель и считается довольно-таки точной, она всё же неполная. «Она эффективна для предположений, но физики не так уж их любят», - прокомментировал Патрик Коппенбург, ученый, работающий с БАК.

Сильнейший недостаток модели - это то, что она не учитывает силу гравитации (она описывает только три других фундаментальных взаимодействия) и такие понятия, как тёмная материя и тёмная энергия. Она также не очень-то хорошо работает с нынешними теориями о происхождении Вселенной.

Другими словами, стандартная модель физики - это лучшее описание того, как работают вещи вокруг нас. Однако, по словам Коппенбурга, эта теория «точно в каком-то месте ошибочна». Сталкивая частицы в БАК, он и другие учёные пытается найти отклонения от этой модели.

3. Что эти учёные уже обнаружили

Диаграмма 17-ти фундаментальных частиц стандартной модели, включая бозон Хиггса
Наиболее важным событием за всю историю Большого адронного коллайдера стало открытие бозона Хиггса.

Еще с 1960-х годов считалось, что бозон Хиггса - часть поля Хиггса, невидимого поля, проходящего сквозь пространство и влияющего на все частицы. Согласно предположениям физиков, именно благодаря этому полю у частиц есть масса (или же сопротивление при передвижении).
Физик Брайн Грин писал в своей статье:

«Представьте, что шарик для пинг-понга погрузили под воду. Когда вы пытаетесь погрузить его глубже, то он кажется в разы более тяжелым, чем он был вне воды. Его взаимодействие с водой приводит к увеличению его массы. То же случается с частицами, погруженными в поле Хиггса»

В принципе, никого не удивило открытие бозона и поля Хиггса, ведь все законы стандартной модели указывали на их существование. Загвоздка заключалась в том, что не было прямых доказательств. «Когда мы строили БАК, то надеялись либо обнаружить бозон Хиггса, либо доказать, что его не существует», - комментирует Коппенбург.

В 2012 году, спустя три года экспериментов, физики доказали существование бозона Хиггса. Было высчитано, что сразу после столкновения бозон Хиггса разлагался на другие частицы, следуя определенным закономерностям. Данные, собранные после столкновения протонов, помогли понять и предсказать эти закономерности.

Это открытие невероятно важно: поле Хиггса - краеугольный камень стандартной модели. Благодаря ему, все другие уравнения становятся в разы понятней. Мы смогли обнаружить его спустя 50 лет после того, как его существование было предсказано на бумаге, а это значит, что мы на верном пути в изучении устройства нашей вселенной.

4. Почему БАК снова включают?


Туннели Большого адронного коллайдера
Все эксперименты, что проводились в прошлом, были лишь началом. Спустя несколько лет работы над улучшением магнитов (они ускоряют и контролируют движение частиц) и сенсоров, начнется новая эра: теперь серия экспериментов включает в себя разгон и столкновение частиц, заряд которых будет в два раза больше предыдущего.

Новые столкновения частиц позволят учёным открыть новые (и, возможно, даже большие) частицы, а также изучить бозон Хиггса и его поведение в разных условиях.

«Мы надеемся открыть элементы, не предсказанные стандартной моделью. К примеру, частицы настолько тяжелые, что они не были еще открыты, или же другие типы отклонений», - делится надеждами Коппенбург.

Возможно, к примеру, что бозон Хиггса - это лишь одна из нескольких частиц из механизма Хиггса.

Достаточное количество новой информации, по словам Коппенбурга и других учёных, поможет нам открыть новые частицы и улучшить нынешнюю стандартную модель, позволив ей точно взаимодействовать с тёмной материей, рождением вселенной и другими плохо изученными темами.

5. Собираются ли в будущем создавать ускорители частиц еще больших размеров?


Схема международного линейного коллайдера
Да. Физики надеются со временем построить ускорители гораздо больших размеров, которые позволят разгонять частицы с большой энергией, чем БАК. Это, в свою очередь, позволит открыть новые частицы и даст более чёткое понимание тёмной материи. Длина международного линейного коллайдера, к примеру, будет составлять 32 километра. В отличие от БАК, где частицы разгоняются по кругу, в этом проекте они будут сталкиваться друг с другом напрямую. Проект всё еще рассматривается, но учёные надеются, что такой ускоритель получится построить в Японии, и он начнёт свою работу к 2026 году.

Когда-то всем казалось, что гигантский ускоритель частиц построят и в США. В 1989 году Конгресс даже согласился потратить шесть миллиардов долларов на постройку сверхпроводящего супер-коллайдера. Строить его собирались в Ваксахэчи, штат Техас, длина его туннелей должна была достигать 86 километров. Сила, с которой в нём сталкивались бы частицы, была бы в четыре раза сильней, чем у Большого адронного коллайдера. Но к сожалению, в 1993 году стоимость проекта выросла до одиннадцати миллиардов долларов, и Конгресс решил прикрыть его, несмотря на то, что два миллиарда уже были потрачены на строительство 25 километров туннеля.

Оригинал: Vox
Перевел.

Об этом загадочном устройстве ходит множество слухов, многие утверждают что он уничтожит Землю, создав искусственную черную дыру и положив конец существованию человечества. В реальности же это устройство может вывести человечество на совершенно новый уровень, благодаря исследованиям, проведенным учеными. В этой теме я попытался собрать всю необходимую информацию для того, чтоб у вас сложилось впечатление о том, что такое Большой адронный коллайдер (БАК)

Итак, в этой теме собрано все, что вам нужно знать об адронном коллайдере. 30 марта 2010 года в CERN (европейская организация ядерных исследований) произошло историческое событие – после нескольких неудачных попыток и множества модернизаций создание самой большой в мире машины для разрушения атомов было окончено. Предварительные тесты, инициирующие столкновения протонов на относительно низкой скорости проводились в течение 2009 и при этом не возникло никаких существенных проблем. Готовилась почва для экстраординарного эксперимента, который будет проведен весной 2010. У основной экспериментальной модели БАК в основе заложено столкновение двух протонных лучей, которые сталкиваются на максимальной скорости. Это мощнейшее столкновение разрушает протоны, создавая экстраординарные энергии и новые элементарные частицы. Эти новые атомные частицы чрезвычайно непостоянны и могут существовать лишь в течение доли секунды. Аналитический аппарат, входящий в состав БАК, может сделать запись этих событий и детально проанализировать. Таким образом ученые пытаются смоделировать возникновение черных дыр.

30 марта 2010, два луча протонов были выпущены в 27-километровый тоннель Большого Адронного Коллайдера в противоположных направлениях. Они были ускорены до скорости света, на которой и произошло столкновение. Была зарегистрирована побивающая рекорды энергия 7 TeV (7 тераэлектронвольт). Величина этой энергии рекордная и имеет очень важные значения. Теперь давайте познакомимся с самыми важными составляющими БАК – датчиками и детекторами, которые регистрируют происходящее во фракциях за те доли секунд, в течение которых происходит столкновение протонных лучей. Есть три датчика, выполняющие центральные роли во время столкновения 30 марта 2010 – это одни из важнейших частей коллайдера, играющие ключевую роль во время сложных экспериментов CERN. На диаграмме показано расположение четырех основных экспериментов (ALICE, ATLAS, CMS и LHCb), которые являются ключевыми проектами БАК. На глубине от 50 до 150 метров под землей были выкопаны огромные пещеры специально для гигантских датчиков-детекторов


Начнем с проекта под названием ALICE (аббревиатура от Большой экспериментальный ионный коллайдер). Это одна из шести экспериментальных установок, построенных на БАК. ALICE настроена для исследования столкновений тяжёлых ионов. Температура и плотность энергии образованной при этом ядерной материи достаточной для рождения глюонной плазмы. На фотографии детектор ALICE и все его 18 модулей


Внутренняя система слежения (ITS) в ALICE состоит из шести цилиндрических слоев кремниевых датчиков, окружающих пункт столкновения и измеряющих свойства и точные положения появляющихся частиц. Таким образом могут быть легко обнаружены частицы, содержащие тяжелый кварк

Одним из основных экспериментов БАК является также ATLAS. Эксперимент проводится на специальном детекторе, предназначенном для исследования столкновений между протонами. Длина ATLAS – 44 метра, 25 метров в диаметре и вес приблизительно 7000 тонн. В центре тоннеля сталкиваются лучи протонов, это самый большой и самый сложный из когда либо построенных датчиков такого типа. Датчик фиксирует все, что происходит во время и после столкновения протонов. Целью проекта является обнаружение частиц, до этого не зарегистрированных и не обнаруженных в нашей вселенной.

Открытие и подтверждение Бозона Хиггса – важнейший приоритет Большого Адронного Коллайдера, потому что это открытие подтвердило бы Стандартную Модель возникновения элементарных атомных частиц и стандартной материи. Во время запуска коллайдера на полную мощность целостность Стандартной Модели будет разрушена. Элементарные частицы, свойства которых мы понимаем лишь частично, не будут в состоянии поддерживать свою структурную целостность. У Стандартной Модели есть верхняя граница энергии 1 TeV, при увеличении которой частица распадается. При энергии в 7 TeV могли бы быть созданы частицы с массами, в десять раз больше чем ныне известные. Правда они будут очень непостоянны, но ATLAS разработан, чтобы обнаружить их в те доли секунды, прежде чем они "исчезнут"

Это фото считается самым лучшим из всех фотографий Большого Адронного Коллайдера:

Компактный мюонный соленоид (Compact Muon Solenoid ) является одним из двух огромных универсальных детекторов элементарных частиц на БАК. Около 3600 ученых из 183 лабораторий и университетов 38 стран, поддерживают работу CMS, которая построила этот детектор и работает с ним. Соленоид расположен под землей в Цесси на территории Франции, близ границы со Швейцарией. На схеме показано устройство CMS, о котором мы и расскажем подробнее


Самый внутренний слой - основанный на кремнии трекер. Трекер - самый большой в мире кремниевый датчик. У этого есть 205 m2 кремниевых датчиков (приблизительно область теннисного корта), включающих 76 миллионов каналов. Трекер позволяет измерять следы заряженных частиц в электромагнитном поле

На втором уровне находиться Электромагнитный калориметр. Адронный Калориметр, находящийся на следующем уровне, измеряет энергию отдельных адронов, произведенных в каждом случае

Следующий слой CMS Большого Адронного Коллайдера – огромный магнит. Большой Соленоидный Магнит составляет 13 метров в длину и имеет 6-метровый диаметр. Состоит он из охлаждаемых катушек, сделанных из ниобия и титана. Этот огромный соленоидный магнит работает на полную силу, чтоб максимизировать время существования частиц


5 слой - Мюонные детекторы и ярмо возврата. CMS предназначен для исследования различных типов физики, которые могли бы быть обнаружены в энергичных столкновениях LHC. Некоторые из этих исследований заключаются в подтверждении или улучшенных измерениях параметров Стандартной Модели, в то время как многие другие - в поисках новой физики.


Очень немного информации доступно об эксперименте 30 марта 2010, Но один факт известен точно. CERN сообщила, что был зарегистрирован беспрецедентный выброс энергии на третьей попытке запуска коллайдера, когда лучи протонов мчались вокруг 27-километрового тоннеля и затем столкнулись на скорости света. Рекордный зарегистрированный уровень энергии был зафиксирован на максимуме, который может выдать в его текущей конфигурации – приблизительно 7 TeV. Именно такое количество энергии было характерно для первых секунд начала Большого Взрыва, давшего начало существованию нашей вселенной. Изначально такой уровень энергии не ожидался, но результат превзошел все ожидания

На схеме показано, как ALICE фиксирует рекордный выброс энергии в 7 TeV:

Этот эксперимент будет повторен сотни раз в течение 2010 года. Чтобы вы поняли, насколько сложен этот процесс, можно привести аналогию разгону частиц в коллайдере. По сложности это равнозначно например выстрелу иголками с острова Ньюфаундленд с такой идеальной точностью, чтобы эти иглы столкнулись где-нибудь в Атлантике, облетев весь Земной шар. Главная цель – обнаружение элементарной частицы – Бозона Хиггса, которая лежит в основе Стандартной Модели построения вселенной

При удачном исходе всех этих экспериментов мир самых тяжелых частиц в 400 ГэВ (так называемая Темная Материя)может наконец быть открыт и исследован.

8 февраля 2013 | Категории: Места , Технологии , Архитектура

Рейтинг:+9 Автор статьи: Bergman Просмотров:33492

БАК – это, прежде всего, большая страшилка. Но так ли опасна она и следует ли её бояться? И да, и нет! Во-первых, всё и даже больше, о чём собираются узнать физики и астрофизики уже заранее известно (см. ниже). А то, что представляет собой настоящую угрозу, из области их предположений, оказывается совсем иной угрозой. Я, почему так уверено говорю об этом, да только потому, что мной сделано 60 научных открытий свойств эфира Вселенной и поэтому об эфире известно всё, но пока мне одному. Во-первых, наука в корне ошибается в отношении «чёрных дыр». «Чёрные дыры» – это ядра всех галактик. Они огромные и их нельзя создать в миниатюре искусственно никоим образом. И вот почему? Любая галактика представляет собой гигантский естественный осциллятор, который циклически расширяется и сокращается с периодом в десятки миллиардов лет. В конце сокращения большинство галактик приобретают форму шара (ядро). Вся Вселенная, в том числе и все галактики, состоят главным образом из эфира. Эфир представляет собой идеальную неразрывную сжимаемую жидкость, сжатую до колоссального давления, имеет огромную плотность и, самое важное, его вязкость оказывается равной нулю. Ядро и есть «чёрная дыра», но в отличие от общепринятого представления о нём в нём нет, и не может быть, никакой материи в любом её виде – один лишь эфир. За сокращением галактики сразу же следует её расширение. В частности, из шарообразной формы дополнительно начинается образовываться дискообразная форма. В результате расширения в ней эфира его статическое давление внутри уменьшается. Через миллионы лет наступает первое критическое давление, при котором из эфира подобно капелькам росы появляются самые различные субэлементарные частицы, в том числе фотоны, жёсткое излучение – рентгеновские лучи, «частицы Бога» и прочие. Галактика становится видимой, светящейся. Если она обращена к нам боком, то в центре вокруг оси наблюдается чёрная точка или чёрное пятно – эфир в котором материя не образуется. Она образуется на больших диаметрах. Существует зона или видимый пояс, в котором образуется материя. Далее по мере расширения дискообразной части происходит усложнение материи. Субэлементарные частицы оказываются сдавленными со всех сторон эфиром. Сам эфир между частицами образует параболоиды вращения со статическим давлением меньшим, чем в окружающем их эфире. Наименьшие поперечные сечение параболоидов на средине расстояния между центрами масс этих частиц и определяют силы сдавливания частиц от не скомпенсированного давления на них с противоположных сторон. Под действием сил сдавливания частицы приходят в движение. Частиц великое множество, поэтому результирующие силы от сдавливающих сил оказываются долгое время равными нулю. За сотни миллионов лет это равновесие постепенно нарушается. Некоторые из них слипаются, затормаживая своё движение, другие не успевают пройти мимо и под действием сил сдавливания начинают вращаться вокруг слипшихся более массивных частиц, образую атомы. Затем через миллиарды лет таким же образом образуются молекулы. Материя постепенно усложняется: образуются газовые звёзды, затем звёзды с планетами. На планетах под действием всё тех же сил сдавливания материя становиться более сложной. Образуются: газообразные, жидкие и твёрдые вещества. Затем на отдельных из них появляется растительный и животный мир и, наконец, живые существа наделённые разумом – люди и инопланетяне. Таким образом, в удалённых зонах галактики по мере расширения дискообразной части, материя становится тем сложнее, чем дальше она находится от центра ядра. В самом же ядре статическое давление, по-видимому, всегда оказывается выше критического, поэтому в нём образование материи оказывается невозможным. Гравитация как таковая не существует вовсе. Во Вселенной и, в частности, в галактиках действует закон всемирного сдавливания (выдавливания). Ядро галактики является «чёрной дырой», но она не обладают силами затягивающими материю. Свет, попавший в такую дыру, свободно проникает сквозь неё вопреки заявлениям о том, что это якобы невозможно. Поскольку эфир Вселенной представляет собой неделимую сжимаемую жидкость, то он не обладает температурой. Температуру имеет лишь материя, поскольку она дискретна (состоит из частиц). Поэтому нашумевший Большой взрыв и Теория тепловой вселенной оказываются ошибочными. Поскольку во Вселенной действует Закон всемирного сдавливания (выдавливания), то отсутствует ни чем не объяснимая гравитация как таковая, принимаемая учёными просто – на веру. Поэтому не состоятельной оказывается ОТО – общая теория относительности А. Эйнштейна и все теории основанные на различного рода полей и зарядов. Никаких полей и зарядов попросту нет. Находит простое и понятное объяснение четыре великих взаимодействия. Кроме того притяжение объясняется сдавливанием, а отталкивание – выдавливанием. Относительно зарядов: разноимённые заряды притягиваются (явление – сдавливание), а одноименные отталкиваются (явление – выталкивание). Поэтому ещё целый ряд теорий также становятся не состоятельными. Однако падать в обморок от страха из-за образования «чёрных дыр» в БАК – Большом андронном коллайдере не следует. Ему её никогда не создать, как бы не пыжился его персонал, и какие бы клятвенные заверения не давал. Создавать «частицы Бога» (бозон Гиггса), по-видимому,_ невозможно и не целесообразно. Эти частицы сами в готовом виде прилетают к нам из первой зоны нашей галактики «Млечный путь», а бояться их – тем паче не следует. Бозон атакует Землю уже миллиарды лет и за это время ничего опасного не случилось. Однако чего следует бояться? Опасность есть и очень большая, о которой даже не догадываются те, которые экспериментируют на БАК! В БАК разгоняют до ранее не достижимых около световых скоростей сравнительно тяжёлые частицы. И, если только они по какой-то причине отклонятся от заданной траектории движения и поэтому попадут в детектор или ещё куда-нибудь, то они, обладая большой скоростью и удельной энергией, а её пытаются увеличивать, начнут вышибать электроны из атомов не радиоактивных веществ, провоцирую тем самым ранее неизвестную ядерную реакцию. После чего начнётся самопроизвольное деление ядер практически всех веществ. Причём это будет атомный взрыв не виданной ранее силы. Вот из-за этого и исчезнет: сначала БАК со Швейцарией, затем Европа и весь земной шар. Хотя на этом быть может всё и остановится, но всех нас уже не будет. Это и будет катастрофа космического масштаба. Поэтому пока не поздно надо персоналу БАК проявить смелость и немедленно приостановить эксперименты на БАК до выяснения истинной причины: так это будет или не так? Быть может я, к счастью, ошибаюсь. Хорошо, если бы это было так. Только коллектив учёных может дать правильный ответ на этот вопрос. Колпаков Анатолий Петрович, инженер-механик

Большой адронный коллайдер (Large Hardon Collider, LHC) — это типичный (хотя и сверхмощный) ускоритель заряженных частиц на встречных пучках, предназначенный для разгона протонов и тяжелых ионов (ионов свинца) и изучения продуктов их соударений. БАК — это микроскоп, с помощью которого физики будут разгадывать, из чего и как сделана материя, получая сведения об её устройстве на новом, еще более микроскопическом уровне.

Многие ждали с нетерпением, а что же будет после его запуска, но нечего в принципе и не произошло — наш мир сильно скучен, чтобы случилось что-то действительно интересное и грандиозное. Вот она цивилизация и её венец творения человек, как раз получилась некая коалиция цивилизации и людей, сплотившись вместе уже на протяжении века, в геометрической прогрессии загаживаем землю, и бесчинно разрушаем всё то, то накапливалось миллионы лет. Об этом мы поговорим в другом сообщении, и так – вот он АДРОННЫЙ КОЛЛАЙДЕР .

Вопреки многочисленным и разносторонним ожиданиям, народов и СМИ всё прошло тихо и мирно. О, как же было всё раздуто, например газеты твердили от номера к номеру: «БАК = конец света!», «Путь к катастрофе или открытиям?», «Аннигиляционная Катастрофа», чуть ли не конец света пророчили и гигантскую черную дыру, в которую засосет всю землю. Видимо эти теории выдвигали завистливые физики, у которых в школе не получилось получить аттестат об окончании с цифрой 5, по этому предмету.

Вот, например был такой философ Демокрит, который в своей древней Греции (кстати, современные школьники пишут это одним словом, т.к. воспринимают это несуществующей странной , наподобие СССР, Чехословакии, Австро-Венгрия, Саксония, Курляндия и т.д. – «Древняягреция») он высказал некую теорию, что вещество состоит из неделимых частиц – атомов , но доказательство этому, ученые нашли только приблизительно через 2350 лет. Атом (неделимый) – разделить тоже можно, это обнаружили ещё спустя 50 лет, на электроны и ядра, а ядро – на протоны и нейтроны. Но и они, как выяснилось, не самые мелкие частицы и в свою очередь состоят из кварков. На сегодняшний день физики считают, что кварки – предел деления материи и ничего меньше не существует. Известно шесть типов кварков: верхний, странный, очарованный, прелестный, истинный, нижний – а соединяются они с помощью глюонов.

Слово «коллайдер» происходит от английского collide – сталкиваться. В коллайдере два пуска частиц летят навстречу друг другу и при столкновении энергии пучков складываются. Тогда как в обычных ускорителях, которые строятся и работают вот уже несколько десятилетий (первые их модели относительно умеренных размеров и мощности, появились ещё перед второй мировой войной в 30-х годах), пучек ударяет по неподвижной мишени и энергии такого соударения гораздо меньше.

«Адронным» коллайдер назван, потому что предназначается для разгона адронов. Адроны – это семейство элементарных частиц, к которым относятся протоны и нейтроны, из них состоят ядра всех атомов, а также разнообразные мезоны. Важное свойство адронов – то, что они не являются по-настоящему элементарными частицами, а состоят из кварков, «склееных» глюонами.

Большим коллайдер стал из-за своих размеров – это крупнейшая физическая экспериментальная установка из всех когда-либо существующих в мире, только основное кольцо ускорителя тянется более, чем на 26 км.

Предполагается, что скорость разогнанных БАКом протонов составит 0,9999999998 от скорости света, а количество столкновений частиц, происходящих в ускорителе каждую секунду, достигнет 800 млн. Суммарная энергия сталкивающихся протонов составит 14 ТэВ (14 тераэлектро-вольта, а ядер свинца – 5,5ГэВ на каждую пару сталкивающихся нуклонов. Нуклоны (от лат. nucleus - ядро) - общее название для протонов и нейтронов.

Существуют разные мнения по поводу техники создания ускорителей на сегодняшний день: одни уверяют, что она подошла к своему логическому приделу, другие же что предела совершенству нет – и различными обзорами приводят обзоры конструкций, размер которых в 1000 раз меньше, а по производительности выше БАК’а. В электронике или компьютерной технике постоянно идет миниатюризация при одновременном росте работоспособности.

Large Hardon Collider, LHC — a typical (albeit extremely) accelerator of charged particles in the beams, designed to disperse the protons and heavy ions (lead ions) and study the products of their collisions. BAC — this microscope, in which physics will unravel, what and how to make the matter of getting information about its device in a new, even more microscopic level.

Many waited eagerly, but what comes after his run, but nothing in principle and has not happened — our world is missing much that has happened is something really interesting and ambitious. Here it is a civilization and its crown of creation man, just got a sort of coalition of civilization and the people, unity, together for over a century, in a geometric progression zagazhivaem land, and beschinno destroying anything that accumulated millions of years. On this we will talk in another message, and so — that he Hadron Collider.

Despite the many and varied expectations of peoples and the media all went quiet and peacefully. Oh, how it was all bloated, like the newspaper firm by number of rooms: «BAC = the end of the world!», «The road to discovery or disaster?», «Annihilation catastrophe», almost the end of the world and things are a gigantic black hole in zasoset that all the land. Perhaps these theories put forward envious of physics, in which the school did not receive a certificate of completion from the figure 5, on the subject.

Here, for example, was a philosopher Democritus, who in ancient Greece (and, incidentally, today’s students write it in one word, as seen this strange non-existent, like the USSR, Czechoslovakia, Austria-Hungary, Saxony, Kurland, etc. — «Drevnyayagretsiya»), he had some theory that matter consists of indivisible particles — atoms, but the proof of this, scientists have found only after about 2350 years. Atom (indivisible) — can also be divided, it is found even after 50 years on the electrons and nuclei and the nucleus — protons and neutrons at. But they, as it turned out, not the smallest particles and, in turn, are composed of quarks. To date, physics believe that quarks — the limit of division of matter and anything less does not exist. We know of six types of quarks: the ceiling, strange, charmed, charming, genuine, bottom — and they are connected via gluons.

The word «Collider» comes from the English collide — face. In the collider, two particles start flying towards each other and with the collision energy beams added. While in conventional accelerators, which are under construction and work for several decades (the first of their models on moderate size and power, appeared before the Second World War in the 30-s), puchek strikes on fixed targets and the energy of the collision is much smaller.

«Hadronic» collider named because it is designed to disperse the hadrons. Hadrons — is a family of elementary particles, which include protons and neutrons, composed of the nucleus of all atoms, as well as a variety of mesons. An important feature of hadrons — that they are not truly elementary particles, and are composed of quarks, «glued» gluon.

The big collider has been because of its size — is the largest physical experimental setup ever in the world, only the main accelerator ring stretches for more than 26 km.

It is assumed that the velocity of dispersed tank will 0.9999999998 protons to the speed of light, and the number of collisions of particles originating in the accelerator every second, to 800 million total energy of colliding protons will be 14 TeV (14 teraelektro-volt, and the nuclei of lead — 5.5 GeV for each pair of colliding nucleons. nucleons (from Lat. nucleus — nucleus) — the generic name for the protons and neutrons.

There are different views on the creation of accelerator technology to date: some say that it came to its logical side, others that there is no limit to perfection — and the various surveys provided an overview of structures, which are 1000 times smaller, but higher productivity BUCK ‘ Yes. In the electronics or computer technology is constantly miniaturization, while the growth of efficiency.

Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png